

- 1. Find $\frac{du}{dv}$ where $u = \frac{v}{3} \frac{5}{2v}$.
- 2. Show that $\cos^4 \theta \sin^4 \theta = \cos 2\theta$
- 3. Calculate the angle between vectors \boldsymbol{u} and \boldsymbol{v} where $\boldsymbol{u} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ and $\boldsymbol{v} = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$.
- 4. Sketch the graph of $y = Log_3 (x + 4)$, indicating at least 2 points on your graph.
- 5. If f(x) = 2x + 4 and g(x) = 5 4x, find a formula for the inverse of g(f(x)).
- 6. In the diagram shown, the straight line Passes through the point (3, 5) and makes an angle of 120° with the positive direction of the *x*-axis.
 Find the gradient and equation of this line.

- 7. Find the rate of change of $f(x) = (3x 5)^4$ at x = 2.
- 8. Vectors **a** and **b** are perpendicular. If $\mathbf{a} = \begin{pmatrix} 3x \\ x \\ 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 2x \\ 5 \\ -6 \end{pmatrix}$, find the value of x.
- 9. For what values of x is the function $f(x) = x^3 12x$ only decreasing.
- 10. Find the equation of the median AD of the triangle ABC with coordinates A(3,2), B(-8, 1) and C(4,-7).