

National 5 Final Exam Practice	
Algebraic Skills	Sketching Quadratic Functions
Average Allocation	3 / 4 Marks

1. The graph with equation y = (x - a) (x-b) is shown below.

- a. Find the values of a and b.
- b. Find the coordinates of the turning point.
- c. Write down the equation of the axis of symmetry.
- 2. Sketch the graph of the function $f(x) = (x-3)^2 4$, indicating clearly the coordinates of the turning point and the y-intercept.
- 3. Sketch the graph of the function with equation $y = x^2 + 4x 1$.
- 4. Factorise $x^2 + 3x 10$ and hence, sketch the graph of the equation $y = x^2 + 3x 10$.
- 5. Write down the equation of the graph shown below and find the point at which the graph cuts the y-axis.

- 6a. Write the quadratic equation $y = x^2 + 6x 3$ in the form $(x + a)^2 + b$.
- 6b. Hence, sketch an annotated graph of $y = x^2 + 6x 3$, showing the y-intercept.
- 7. Find the roots of the quadratic equation $y = x^2 + 4x 12$.
- 8. Sketch the graph of the quadratic equation $y = x^2 + 5x 24$, indicating clearly the roots.
- 8b. Write down the equation of its axis of symmetry.
- 9a. A graph has equation $y = 12 (x + 5)^2$. Write down the coordinates of the turning point.
- 9b. Write down the equation of its axis of symmetry.
- 10. Sketch the graph with equation $y = x^2 2x 9$ indicating clearly the turning point and y-intercept.