Common Wording	Topic / Method Assessed
Express in the form $(x - a)^2 + b$	Completing the Square Half, Square, Remove
Graph of $y = ax^2$. Find the value of a	Substitute given point for x and y.
Simplify $\sqrt{a} + \sqrt{b} + \sqrt{c}$ in its simplest form	Express all surds in form of smallest surd
Find the gradient of the line	Express in the form $y = mx + c$.
Find the y-intercept	Look for c or substitute x = 0
Crosses the x-axis	Substitute y = 0
State the equation of the axis of symmetry	Quadratic Graph: State as x = ?
Coordinates of turning point of $(x - a)^2 + b$	Point (a,b) Signs(Change) Keep
Show that= (given expression/equation)	Start with knowledge of obvious formula and build up
Particularly towards the end of the paper and	to the expression given. Remember that the
you are asked to show how a trinomial can be	supplementary part to the question can still be
formed	attempted without success in the first. Just use the
	trinomial given.
Find the point of intersection of the lines	Simultaneous equations
Find the depth of liquid, height of tunnel, etc	Pythagoras in the circle (use half of chord length and
	radius as hypotenuse)
Angles and circles Calculate the angle	Look for right angles in semi circles and at tangents; use
	2 radii for isosceles triangles and equal angles.
Find the resultant vector $\underline{u} - \underline{3v}$	Multiply and subtract vectors as required
The graph of y = aSinbx is shown. Find a and b	$a = (max - min) \div 2$
The graph of $y = aCosbx$ is shown. Find a and	b = Number of cycles graph makes within 360°
b.	
Triangle diagram with 2 sides given and the	Cosine Rule or Area formula
angle between them also given	Read the question to determine which one.
Triangle diagram – all 3 sides given	Cosine rule (angle formula starting CosA =)
	Possibly Converse of Pythagoras if asked to check for a
	right angle (compass directions)
Solve $ax^2 + bx + c = 0$ correct to one d.p.	Use the quadratic formula from the formula list. Useful
	to evaluate the discriminant first
Two shapes are mathematically similar	Find the Scale Factor a ; Area Factor = a^2 ; Vol. Factor a^3